Math II Exam Review 2015-2016

N.RN-2 (one question on the exam)		
1. Simplify $\sqrt{45x^2y^5}$	2. Simplify $\sqrt[3]{16x^4y^2}$	
3. Simplify $\sqrt{50xy^5}$	4. Simplify $\sqrt[3]{27x^2y^8}$	
5. Simplify $(2r^3)^2$	6. Which expression is equivalent to $(64x^5y^3)^{\frac{1}{4}}$ A. $2x \cdot \sqrt[4]{4xy^3}$ B. $4x \cdot \sqrt[4]{4xy^3}$	
A. $2r^5$ B. $2r^6$ C. $4r^5$ D. $4r^6$	C. $8xy \cdot \sqrt[4]{xy}$ D. $16x \cdot \sqrt[4]{xy^3}$	
7. Which expression is equivalent to $(4x^3)^{\frac{1}{2}} \cdot (9x)^{\frac{1}{2}}$ A. $6x^2$ B. $\sqrt{13x^4}$	8. Simplify $(16x^5y^{-3}z^2)^{\frac{-1}{4}}$	
C. $\sqrt{36x^4}$ D. $36x^{\frac{3}{4}}$		
9. Simplify $(4x^{-3}y^{4}z^{-2})^{\frac{-3}{2}}$	10. Simplify $(8w^7x^{-5}y^3z^{-9})^{\frac{-2}{3}}$	

A.5	SE.1a&b (two questions on the exam)		
1.	The height in meters of a projectile involves the object's initial height, upward velocity, and acceleration because of gravity. If the equation $y = -9.8t^2 + 109.7t + 7.4$ models the number of meters, y , a toy rocket is above the ground t seconds after being launched, what does the 7.4 represent?	2.	The population of a bacteria after x number of hours is modeled by the expression $1,000(0.75)^x$. What is the rate of decay of the population of bacteria?
Α.	Initial height of the rocket	А.	25%
В.	Acceleration because of gravity	В.	75%
C.	Initial upward velocity of the rocket	C.	0.75%
D.	Total time the rocket travels after t seconds	D.	1.25%
3.	Which is the coefficient of the expression $-3a^2c^{-7}$?	4.	The population of a city after x years is modeled by the equation $y = 20000(1.10)^x$. What does the 1.10 represent in this equation?
Α.	-7	Α.	The initial population of the city is 110.
В.	-3	В.	The initial population of the city is 20,000.
С.	2	С.	The population of the city is increasing by 10% each year.
D.	3	D.	The population of the city is increasing by 110% each year.
5.	Which of the following is true regarding the graph of the function $y = \frac{1}{x-3}$?	6.	The charges for renting a car from a certain rental company are given by the expression $2(0.36x + 11d)$, where x represents the number of miles driven and d is the number of days for which the car has been rented. Which statement
Α.	There is an x-intercept at $x = 3$.		about renting a car from this company is true ?
В.	There is an x-intercept at $x = -3$.	A.	
C.	There is a vertical asymptote at $x = 3$.	B.	The charges are 0.72 per mile driven and 22 per day.
D.	There is a vertical asymptote at $x = -3$.	C. D.	The charges are \$11 per mile driven and \$0.36 per day. The charges are \$22 per mile driven and \$0.72 per day.

7.	The expression $500(2)^x$ can be used to determine the size of a population that grows over a period of time. What does the 500 represent in the expression?	8. The expression $-x^2 + 2x + 3$ represents the height of a ball x seconds after it was thrown. What are the zeros of the expression and what do they represent in context?
А. В. С. D.	The final size of the population The initial size of the population The amount of time necessary to double The rate at which the population is growing	

A.APR.1 (two questions on the exam)		
1. Simplify $2(x^3y^2 - 4x^2y^2) - 2x(y^2x^2 + 3)$	2. Simplify $3x(x^2y - 2xy^2) - 4(x^3y + xy^2)$	
3. Simplify $4(x^3y^2 - 3x^2y^2) - 3x(y^2x^2 + 2xy^2)$	4. Which expression is equivalent to $3x^3 + 5x^2 - 4x^3 - (4x^2 - 7x^3)$?	
	A. $7x^5$ B. $6x^3 + x^2$ C. $-8x^3 - x^2$ D. $-8x^3 + 9x^2$	
5. Which expression is equivalent to $(8x^2 + 3x + 7) + (3x^2 + x - 2) - (2x + 9)?$	6. Which expression is the product of $(2x-3)(4x^2+4x+5)?$	
A. $5x^2 + x - 4$ B. $5x^2 - x + 14$ C. $11x^2 + 2x - 4$ D. $11x^2 + 6x + 14$	A. $8x^3 + 8x^2 + 10x - 15$ B. $8x^3 - 4x^2 - 2x - 15$ C. $8x^3 - 12x^2 + 6x - 15$ D. $8x^3 - 20x^2 + 22x - 15$	
7. Which polynomial is equivalent to $3b^4(6b^3 - 7b^2 + 5)$?	8. Find the volume of a rectangular prism with a length $(4x - 2)$, width of $(x + 1)$, and height $(x - 5)$.	
A. $18b^{12} - 21b^8 + 15b^4$ B. $18b^7 - 21b^6 + 15b^4$ C. $18b^7 - 21b^6 + 15$ D. $18b^{12} - 21b^8 + 15$		
9. Which expression is equivalent to (x + 1)(3x - 2)(x + 4)?	10. Which of the following is equivalent to $(5t + 3)^2$	
a. $5x + 3$ b. $3x^3 - 8$	a. $10t + 9$ b. $25t^2 + 9$	
c. $3x^3 + 13x^2 + 2x - 8$ d. $16x^2 + 2x - 8$	c. $25t^2 + 30t + 9$ d. $10t^2 + 30t + 9$	

A.APR.3 (one question on the exam)	
A.APR.3 (one question on the exam) 1. Given the function $y = 2x^2 + 6x - 3$, list the zeros of the function.	2. Sketch the graph of the function $f(x) = (x + 5)^2$. How many zeros does the function have? How does the multiplicity relate to the graph of the function?

8.	Which of the following functions has the same set of zeros as the function $f(x) = x^2 - 6x + 8$?	9. The roots of a quadratic equation are 6 and $\frac{3}{4}$. If one of the factors of the equation is $x - 6$, what is the second factor?	two
В. С.	g(x) = x - 4 $g(x) = x^{2} - 5x + 6$ $g(x) = 2x^{2} - 12x + 16$ $g(x) = x^{2} + 6x + 8$	A. $3x - 4$ B. $3x + 4$ C. $4x - 3$ D. $4x + 3$	

A.CED.1 (two questions on the exam)			
1. Karen opened a savings account with \$500. The money earns 0.2% interest compounded monthly. If she does not make any withdraws or any more deposits, <i>approximately</i> how much money will Karen have in the account after two years?	2. A biologist predicts that the height of a certain tree will increase exponentially with time, tripling every 60 years. The tree is now 5 meters tall. According to the biologist's prediction, in how many years would the tree become 45 meters tall?		
A. $$502$ B. $$512$ C. $$515$ D. $$525$ 3. Yvette took 3 history tests. She earned grades of 87 and92 on the first 2 tests. Her mean (average) grade for the 3tests was 90. Which of the following equations can be usedto determine her grade G on the 3 rd test?	A. 120B. 180C. 540D. 8004. The area of a rectangular tabletop is $24 ft^2$. The length of the table is 2 feet longer than its width. Which equation could be used to find the width (w) of the tabletop?		
A. $90 = \frac{87+92}{2}$ B. $90 = \frac{87+92+90}{3}$ C. $90 = \frac{87+92+6}{2}$ D. $90 = \frac{87+92+6}{3}$	A. $24 = 2w + 2$ B. $24 = w^2 + w$ C. $24 = 2w^2$ D. $24 = w^2 + 2w$		

A.REI.2 (one question on the exam)		
$1.\sqrt{x-3} + 5 = x$	$2.\sqrt{3x+7} = x-1$	
$3.\sqrt{5x-1} + 3 = x$	$4.\sqrt{x+7} - x = 1$	
5. If the fraction $\frac{1}{2x-5}$ is equal to $\frac{1}{5}$, what is the value of x?	6. Which value or values of x will make this algebraic equation true? $\frac{x}{x+2} - \frac{1-x}{2} = x - 1$	
A. 0 B. 2 C. 5 D. 10	A. $x = 0$ B. $x = -1$ C. $x = -1, 2$ D. $x = \{all \ real \ numbers\}$	

7. During a 60-minute period, a traffic engineer counted 66 trucks and cars that crossed a bridge. The ratio of trucks to cars that travel across the bridge is usually 3:8. The equation $\frac{3}{8} = \frac{t}{66-t}$ can be used to predict the number of trucks, <i>t</i> , the engineer should have counted. How many trucks should the engineer have counted?	8. What is the solution set to the rational equation $\frac{3}{x} + \frac{5}{x+2} = 2$?
A. 6 B. 18 C. 22 D. 48	$A. \{3, -1\}$ $B. \{0, 4\}$ $C. \{-0.5\}$ $D. \{-1\}$
9. Which of the following equations is equivalent to $x - 2 =$	
A. $x^2 - 4x + 4 = 16(2 - x)$ B. $x^2 + 4 = 8$	
C. $x^2 + 4x - 4 = 8$ D. $x^2 - 2^2 = 8 - 4x$	

A-REI.4b (one question on the exam)	
1. Solve $3x^2 + 7x - 6 = 0$ for x.	2. What is the solution set for the following equation? $x^2 - 6x + 9 = 16$
A. $x = \frac{2}{3}$ or $x = 3$ B. $x = \frac{2}{3}$ or $x = -3$ C. $x = -\frac{2}{3}$ or $x = 3$ B. $x = \frac{2}{3}$ or $x = -3$ C. $x = -\frac{2}{3}$ or $x = 3$ D. $x = -\frac{2}{3}$ or $x = -3$ 3. What value should be substituted for n in the quadratic formula below to solve $x^2 - 5x + 2 = 0$? $x = \frac{5 \pm \sqrt{n}}{2}$	A. {-7, 1}B. {-1, 7}C. {3,4}D. {3}4. John solved the equation $2x^2 + x = 7$ by using the quadratic formula. His work is shown below. $x = \frac{n \pm \sqrt{57}}{4}$ What value should John substitute for n found in the equation above?
A. 2 B. 17 C. 18 D. 33 5. What are the solutions for the equation $x^2 - 5x = 6$?	A7 B1 B. 1 D. 7 6. What are the roots of the equation $2x^2 + 7x + 4 = 0$?
A6, 1B3, -2C1, 6D. 2, 37. The area of a square can be represented by the expression $4x^2 - 4x + 1$. If the area of the square is 121 square inches, what is the value of x , in inches?	A. $\frac{-7\pm\sqrt{17}}{4}$ B. $\frac{-7\pm\sqrt{17}}{2}$ C. $\frac{7\pm\sqrt{17}}{4}$ D. $\frac{7\pm\sqrt{17}}{2}$ 8. Solve $6x^2 - 2x - 1 = 0$. Which of the following is the solution in the simplest form?
A. 4 B. 5 C. 6 D. 11	A. $\frac{-1\pm 2\sqrt{7}}{6}$ B. $\frac{1\pm 2\sqrt{7}}{6}$ C. $\frac{-1\pm\sqrt{7}}{6}$ D. $\frac{1\pm\sqrt{7}}{6}$

9. Which of the following quadratic functions has roots $x = 3$ and $x = -1$?	10. A ball is thrown upward from the top of a building that is 160 feet tall. The height, h , of the ball t seconds after being thrown is given by the equation $h = -16t^2 + 48t + 160$. After how many seconds will the ball hit the ground?	
A. $x^2 - 2x - 3$ C. $x^2 - 4x + 3$ B. $x^2 + 2x - 3$ D. $x^2 + 4x + 3$	A. 2 B. 3 C. 5 D. 10	
B. $x^2 + 2x - 3$ D. $x^2 + 4x + 3$ 11. An equation in the form $ax^2 + bx + c = 0$ is solved by the quadratic formula. The solution to the equation is shown below.	12. Solve $x^2 + 8x = -17$ for x .	
$x = \frac{9 \pm \sqrt{89}}{2}$		
What are the values of a , b , and c in the quadratic equation?		
A. $a = 1, b = -9, c = 2$	A. <i>x</i> = 2, 4	
B. $a = 1, b = -9, c = -2$	B. $x = 2,9$ C. $x = 2,7$	
C. $a = 1, b = 9, c = 2$ D. $a = 1, b = 9, c = -2$	D. No real solutions	
	1	
A-REI.7 (one question on the exam)		
1. At what points do the graphs of $y = 2x + 1$ and $y = 2x + 1$	2. What are the solutions of the system of equations	
$-(x-1)^2 + 3$ intersect?	$\begin{cases} y = x^2 - 6x + 8 \\ x - y = -2 \end{cases}$?	
 A. (-3, 5) and (1, 3) B. (-2, -6) and (2, 2) C. (-1, -1) and (1, 3) D. (1, 3) and (3, 7) 	A. (5, 3) and (2, 0) B. (6, 8) and (1, 3) C. (-6, -4) and (-1, 1) D. (-5, -7) and (-2, -4)	
3. What are the y-coordinates of the solutions of the system of equations $5x - y = 3$ and $2x^2 + y = 0$?	4. Which point is a solution to the following system? $(y = 2(x - 2)^2 - 3)$	
y = y = 3 and 2x + y = 0	$\begin{cases} y - 2(x - 2) - 3 \\ y = -2x + 5 \end{cases}$	
A18 and $-\frac{1}{2}$ C. $-\frac{9}{2}$ and -2		
A18 and $-\frac{1}{2}$ C. $-\frac{9}{2}$ and -2 B3 and $\frac{1}{2}$ D. $-\frac{3}{2}$ and -1	A. (0, 3) B. (0, 5) C. (2, -3) D. no solution point	
5. Which system of equations is represented by the graph sho		
A. $y = x^2 - 1$ 2x + y = 3 C. $y = 2x^2 - 1$ 2x + y = 3		
B. $y = x^2 - 1$ 2x - y = 3 D. $y = 2x^2 - 1$ 2x - y = 3		

Based on the graph, which point is a reasonable sol	ution to the system?	
A. (2, -1) B. (4, 3) C. (1, 0)	D. (-8, 0)	
A. (2, -1) B. (4, 3) C. (1, 0) At what points does the line $y = 3x - 1$ intersect the rcle $x^2 + (y - 1)^2 = 4$?	8. What is the solution to the	e following system of equations? $ \begin{cases} x^2 + y^2 = 25 \\ 4y = -3x \end{cases} $
Describe the possible number of solutions of a linear and		

	10.00 4.000.00								
1.	The graph of y	$= x^3$ is shown b	below.			y I I I I	111		
	What is the app	proximate soluti	on if $x = 2$?			9 8 7			
						5 4 3			
					• • -9 -8 -7 -6 -5	2	Ш	4 5 6 7	x
						-4 -3 -2 -7 -1 -2 -3	23	4 5 6 /	8 9
						-4			
						-7 -8 -9			
	A8	B1	C. 1	D. 8					

	520V
2. The graph of $y = -0.5x^2 + 3.5$ is shown below.	y
Which of the following is not part of the solution	set of this equation?
A. (1, 3) B. (3, 1) C. (-1, 3) D. (3, -1)
A. (1, 3) B. (3, 1) C. (-1, 3) D. 3. For which of the following functions is (-1, -8) a	4. For which of the following functions is (2, 12) a solution?
solution? A. $5x^2 - 3x + 2$ B. $2x^2 + 5x - 4$ C. $-3x^2 + 4x - 1$ D. $-2x^2 - 2x + 3$	A. $3x^2 - x + 2$ B. $2x^2 - 3x + 4$ C. $-2x^2 + 2x - 3$ D. $-3x^2 - x + 4$
5. For which of the following functions is (-1, 6) a solution	
A. $3x^2 + 2x - 1$ B. $x^2 - 5x + 2$ C. $2x^2 - 3x + 1$ D. $x^2 + 4x - 5$	····

F-IF.2 (two questions on the exam)	
1. The function $C(n) = 10(2)^n$ predicts the population of coyotes in an area n years after 2010. What is the predicted number of coyotes in the area in 2015?	2. For the function $f(x) = 2 + x^2$, what is $f(-5)$?
A. 100 B. 270	A27 B23
C. 320 D. 440	C. 9 D. 27
3. If $f(x) = x^2 - x$, what is $f(-3)$?	4. Brad threw a baseball off a cliff. The height <i>h</i> , of the ball, in feet, is modeled by the function below, where <i>t</i> represents time, in seconds, after the ball has been thrown. $h(t) = -16t^2 + 48t + 50$
A12 B6	What is the height of the baseball after 1 second? A. 50 feet B. 66 feet
C. 6 D. 12	C. 82 feet D. 92 feet

5. Suppose $f(x) = x^2$ and $g(x) = 2x - 3$. What is the value of $g(4) + f(-3)$?	6. If $g(x) = x^2 + 6$, what is the value of $g(x + 1)$?
A4 B. 7 C. 14 D. 25 7. Find the value of k for $f(x) = 5x^2 + kx + 2$ if $f(3) = 23$.	A. 7 B. $x^{2} + 1$ C. $x^{2} + x + 6$ D. $x^{2} + 2x + 7$ B. If $f(x) = \begin{cases} x^{2} + 1 & x < -1 \\ x^{3} & -1 \le x < 2 \\ \frac{4}{x} & x \ge 2 \end{cases}$ Find $2f(-3) + f(1) - 4f(2)$

F-IF.8a (two questions on the exam)	
1. How many times does the graph of the quadratic function	2. Jenny used the expression $-16x^2 + 38x + 5$ to determine the
$f(x) = 3x^2 - 6x + 3$ intersect the x-axis?	height of an object x seconds after it was hit into the air. How long
	does it take the object to hit the ground?
	$A = \frac{1}{2}$ second $B = \frac{2}{2}$ second
A. 0 B. 1	$A.\frac{1}{8}$ secondB. $\frac{2}{5}$ secondC. 2.5 secondsD. 8 seconds
C. 2 D. 3	
3. Three statements about $f(x) = 2(x - 3)^2 + 5$ are given.	4. Suppose the equation $h(t) = -t^2 + 5t + 14$ models the height
1. The Axis of symmetry is $x = 3$.	of a ball thrown into the air off the bleachers. Which statement
2. The vertex is located at (3, 5).	about the flight of the ball is true?
3. The function's minimum value is 5.	
Which statement or statements are correct?	
A. All 3 statements	A. The ball starts from a height of 19 feet.
B. Statement 3 only	B. The ball takes 5 seconds before it hits the ground.
C. Statements 1 and 2	C. The ball takes 14 seconds before it hits the ground.
D. Statements 2 and 3	D. The ball reaches a maximum height of 20.25 feet.
5. A company's profit is described by the equation $P(x) =$	6. A ball was kicked straight up into the air from at a velocity of 80
$-5x^2 + 300x + 15,000$ where x is the price in dollars that	feet per second. The function $h(t) = -16t^2 + 80t$ models the
the company charges for its product. What should the	height of the ball <i>t</i> seconds after it was kicked. For how many
company charge for the product to generate the maximum	seconds is the ball descending?
profit?	
A. \$20 B. \$30	A. 2.0 seconds B. 2.5 seconds
C. \$50 D. \$60	C. 3.5 seconds D. 5.0 seconds
7. Steve threw a ball into the air. The height of the ball t	8. What is the axis of symmetry of $2x^2 - 4x = y - 3$?
seconds after it was thrown into the air is modeled by the	8. What is the axis of symmetry of $2x^2 - 4x - y - 5$:
function $h(t) = -16t^2 + 40t + 144$. How long does it	
take the ball to hit the ground?	
A. 1.25 seconds B. 2.0 seconds	A.x = 1 B. $x = -1$
C. 2.5 seconds D. 4.5 seconds	C. $x = 3$ D. $x = -3$
	it, in thousands, of a company where t is the number of years since
the company started. How many years will it take till the com	
A. 8 years B. 14 years C. 20 years D. 36 ye	ears

) (on							
L. Maria compared the maximum value of the function							$3x^2 + 2x - 1$ to the
$f(x) = -x^2 + 4x - 1$ to the maximum value of the				quadratic	function that	fits the values show	wn in the table below
uadratic function that fits the values shown in the table					2	$x \qquad g(x)$	
N.					() -1	
					1	L 8	
	x	g(x)					-
$\begin{array}{c cccc} x & g(x) \\ \hline -5 & -41 \\ \hline -4 & -20 \end{array}$							-
							-
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$					2	1 71	
				Which st	atement is tru	ie about the two fu	unctions?
						e the same y-interc	
+ i.c. + l	ha valua of the cos	llor movimum?					
	he value of the sma	aller maximum?				the same x-interce	
1	B1					e the same vertex.	
	D. 7					e the same axis of s	symmetry.
son c	compared the funct	f(x) = 20(1.2)	$)^{x}$ to the functi	ion that fits	the values in	the table below.	
[<i>x</i>	1	2		3	4	5
ŀ	g(x)	12	24		48	96	192
stin istin	A. 14 B and Janda threw g $f(x) = -16x^2 + 3$	e between the y-inf . 8 C. rappling hooks into 82x + 5 gives the heater be threw it. The	6 the air. The eight, in feet,	D. 4 5. A funct			$(-1)^2 + 2$. The graph
stin ion istin v sho	A. 14 B and Janda threw g $f(x) = -16x^2 + 3$ is hook x seconds a ows the height, in f threw it.	. 8 C. rappling hooks into	6 the air. The eight, in feet, ne graph	D. 4 5. A funct	ion $f(x)$ is given on $g(x)$ is shown in the second seco		$(-1)^2 + 2$. The graph
stin istin' istin' v she she	A. 14 B and Janda threw g $f(x) = -16x^2 + 3$ is hook x seconds a ows the height, in f threw it.	. 8 C. rappling hooks into 32x + 5 gives the he after he threw it. The reet, of Janda's hool 12 1.6 2 x rof Seconds e grappling hooks at	6 the air. The eight, in feet, he graph k <i>x</i> seconds	D. 4 5. A funct the functi	ion $f(x)$ is given by a set of $g(x)$ is shown in the set of g(x) is shown in the set of $g(x)$ is shown in the set of $g(x$	bwn below.	
both	A. 14 B and Janda threw g $f(x) = -16x^2 + 3$ is hook x seconds a ows the height, in f threw it. Your Hollidders D D D D D D D D D D	. 8 C. rappling hooks into 32x + 5 gives the he after he threw it. The reet, of Janda's hool 12 1.6 2 rof Seconds e grappling hooks at ements is true?	6 the air. The eight, in feet, he graph k <i>x</i> seconds	D. 4 5. A funct the functi	ion $f(x)$ is given by a set of the formula of the	rrect?	
both me, v	A. 14 B and Janda threw g $f(x) = -16x^2 + 3$ is hook x seconds a ows the height, in f threw it. your builders u in the second second second second second threw it. your builders u in the second	. 8 C. rappling hooks into 32x + 5 gives the he after he threw it. The reet, of Janda's hool 12 1.6 2 rof Seconds e grappling hooks at ements is true?	6 the air. The eight, in feet, he graph k <i>x</i> seconds	D. 4 5. A functi the functi	ion $f(x)$ is given $g(x)$ is shown in $g(x)$ in $g(x)$ in $g(x)$ is shown in $g(x)$ in	rrect?	
both me, v	A. 14 B and Janda threw g $f(x) = -16x^2 + 3$ s hook x seconds a ows the height, in f threw it. your builders us the height in f threw it. your builders us threw threw the which of these stat ustin's hook hit the ustin's hook reacher	. 8 C. rappling hooks into 32x + 5 gives the he after he threw it. The reet, of Janda's hool 12 1.6 2 rof Seconds e grappling hooks at ements is true?	6 the air. The eight, in feet, he graph k <i>x</i> seconds t the same	D. 4 5. A funct the functi	ion $f(x)$ is given $g(x)$ is shown in $g(x)$ in $g(x)$ in $g(x)$ is shown in $g(x)$ in	rrect?	? ntercept.
both me, v An An	A. 14 B and Janda threw g $f(x) = -16x^2 + 3$ s hook x seconds a ows the height, in f threw it. your building to the second se	. 8 C. rappling hooks into 32x + 5 gives the he after he threw it. The reet, of Janda's hool 12 1.6 2 rof Seconds e grappling hooks at ements is true?	6 the air. The eight, in feet, he graph k <i>x</i> seconds t the same	D. 4 5. A funct the functi Which st A. E B. E C. E	ion $f(x)$ is given $g(x)$ is shown in $g(x)$ in $g(x)$ is shown in $g(x)$ in $g(x)$ is shown in $g(x)$ in g	rrect?	? ntercept. -1, 2).

x	-1	0	1	2	3	4
g(x)	-2	0	2	16	54	128
/hich of the fol	lowing is true ?					
. Both function	ons pass through the	intercept.				
	m of $f(x)$ is smaller					
	um of $f(x)$ is greater inction $f(x) = \frac{5}{x}$ to t			bolow		
	$\frac{1}{-1} = \frac{1}{x} = \frac{1}{x}$	2		5	10	٦
<i>x</i>		_		-		_
g(x)	-10	5	2	2	1	
Which of the fol	lowing is true ?					
A. Both function	ons pass through the	point (1, 1)				
	ons pass through the ons have the same ve		ote at $x = 0$.			
B. Both functionC. Both function		ertical asympto intercept.	ote at $x = 0$.			

F-BF.1 (two questions on the exam)				
1. A sequence is shown below. -20, -17, -14, -11, -8,	2. If $f(x) = 3x^3 + 6x^2 + 12x$ and $g(x) = x^2$, what is the product of $f(x)$ and $g(x)$?			
Which explicit equation could be used to determine the value of the n th term in the sequence?				
A. $a_n = n + 3$ B. $a_n = 3n - 23$ C. $a_n = n - 23$ D. $a_n = -3n + 23$ 3. If $f(x) = 3x - 1$ and $g(x) = 4x - 2$, what is $h(x)$ when $h(x) = 2f(x) + g(x)$?	 A. 3x³ + 7x² + 12x B. 3x⁶ + 6x⁴ + 12x² C. 6x³ + 12x² + 24x D. 3x⁵ + 6x⁴ + 12x³ 4. Suppose that two types of bacteria which coexist grow at different rates. The function f(x) = 2(5)^x models the amount of the first types of bacteria present after x hours. The function s(x) = 3x + 2 models the amount of the second type of bacteria present after x hours. Which function, T(x), models the total amount of bacteria present after x hours? 			
A. $h(x) = 7x - 3$ B. $h(x) = 6x - 2$ C. $h(x) = 11x - 5$ D. $h(x) = 10x - 4$	A. $T(x) = 2(5)^{x} + 3x + 2$ B. $T(x) = 2(5)^{x}(3x + 2)$ C. $T(x) = (6x + 4)(5)^{x}$ D. $T(x) = 2(3x + 7)^{x}$			

5. The weekly revenue for Ms. McConnell's business can be estimated by the function $R(n) = 30n$. The weekly costs for her business can be estimated by the function $C(n) = 12n + 1,500$. Which function best represents the weekly profit for this business?	6. The first term of a sequence is 13. Each term in the sequence is 12 more than the previous term. Which explicit equation can be used to determine the n th term in the sequence?
A. $P(n) = -18n - 1,500$	A. $a_n = n + 12$
B. $P(n) = -18n + 1,500$	B. $a_n = 12n + 1$
C. $P(n) = 18n - 1,500$	C. $a_n = 12n + 13$
D. $P(n) = 18n + 1,500$	D. $a_n = 13n$
7. A family wants to carpet two rooms in their home. The area of the first room can be represented by the function $f(x) = 2x^2 - 7x - 30$. The area of the second room can be represented by the function $g(x) = 6x^2 - 11x - 10$. What function, $h(x)$, shows the combined total area?	8. The height, h , of a person varies directly with their weight, w , and inversely with their age, a . If a 22 year old person weighs 250 pounds and is 65 inch tall, which equation matches the situation?
A. $h(x) = 8x^2 + 18x + 40$	A. $h = \frac{a}{5.72w}$
B. $h(x) = 8x^2 - 18x - 40$	B. $h = \frac{5.72w}{a}$
C. $h(x) = 8x^2 + 4x - 20$	C. $h = \frac{a}{0.01w}$
D. $h(x) = 8x^2 - 4x + 20$	D. $h = \frac{0.01w}{a}$
9. The volume, V, of a certain gas varies inversely with the amount of pressure, P, placed on it. The volume of this gas is 175 cm ³ when 3.2 kg/cm ² of pressure is placed on it. What equation matches the situation?	10. The force, F, acting on a charged object varies inversely to the square of its distance, r, from another charged object. When the two objects are 0.64 meter apart, the force acting on them is 8.2 Newtons. What equation matches the situation?
A. $V = \frac{560}{p}$ B. $V = \frac{p}{560}$	A. $F = \frac{3.36}{r^2}$ B. $F = 3.36r^2$
C. $V = 560P$ D. $V = \frac{54.7}{p}$	C. $F = \frac{43}{r^2}$ D. $F = 43r^2$

F-BF.3 (one question on the exam)			
1. The function $f(x) = x^2$ is translated 4 units left and 2	2. The function $f(x) = x^2$ is translated 2 units to the right and 3		
units down. Which of the following represents the translated	units up. Which of the following represents the translated		
function?	function?		
A. $x^2 - 8x + 14$ C. $x^2 + 8x + 14$	A. $x^2 - 4x - 1$ C. $x^2 + 4x + 7$		
B. $x^2 - 8x + 18$ D. $x^2 + 8x + 18$	B. $x^2 - 4x + 7$ D. $x^2 + 4x - 1$		
3. The function $f(x) = 2x^2 - 4x + 4$ is translated 2 units to	4. Which graph of the functions below is narrower than $f(x) =$		
the right and up 1 unit. Which of the following represents	$2x^2 - 1?$		
the translated function?			
	A. $q(x) = x^2 - 1$		
	A. $g(x) = x^2 - 1$ B. $g(x) = \frac{3}{2}x^2 - 1$		
A. $2x^2 + 4x + 5$ C. $2x^2 - 12x + 21$	C. $g(x) = 2x^2 - 2$		
B. $2x^2 + 4x + 4$ D. $2x^2 + 12x + 21$	D. $g(x) = 3x^2 - 1$		

5. The cube root function $f(x) = \sqrt[3]{x}$ is changed to $f(x) = 2\sqrt[3]{x} - 3$. Which statement describes how the graph of $f(x) = \sqrt[3]{x}$ will change?	6. Which statement is true for the function $f(x) = -x^3 + 4x$?
 A. The graph will shift down 3 units and will stretch vertically by a factor of 2. B. The graph will shift down 3 units and will stretch horizontally by a factor of 2. C. The graph will shift to the left 3 units and will stretch vertically by a factor of 2. D. The graph will shift to the left 3 units and will stretch horizontally by a factor of 2. The graph will shift to the left 3 units and will stretch vertically by a factor of 2. The graph will shift to the left 3 units and will stretch horizontally by a factor of 2. The graph will shift to the left 3 units and will stretch horizontally by a factor of 2. The graph will shift to the left 3 units and will stretch horizontally by a factor of 2. 	 A. f(x) is an even function and has end behavior such that as x → ∞, f(x) → ∞ and as x → -∞, f(x) → ∞. B. f(x) is an odd function and has end behavior such that as x → ∞, f(x) → -∞ and as x → -∞, f(x) → ∞. C. f(x) is an odd function and has end behavior such that as x → ∞, f(x) → ∞ and as x → -∞, f(x) → -∞. D. f(x) is an even function and has end behavior such that as x → ∞, f(x) → -∞ and as x → -∞, f(x) → -∞. 8. The function f(x) = x³ is transformed to f(x) = 4x³. Which statement describes the graph of the transformed function?
A. Shift 5 units left and 1 unit down.	A. The graph was stretched horizontally by a factor of 4.
B. Shift 5 units right and 1 unit down.	B. The graph was stretched vertically by a factor of 4.
C. Shift 1 unit left and 5 units down.	C. The graph was translated down by 4 units.
D. Shift 1 unit right and 5 units down.	D. The graph was translated up by 4 units.
9. The graph of a function is shown below. If the graph is translated 3 units right and 8 units down what is the new equation of the function?	n,
A. $y = x + 4 + 2$ B. $y = x + 1 - 3$ C. $y = x - 1 - 3$ D. $y = x - 4 + 2$	

G-CO.2 (one question on the exam)			
1. Which transformation changes the size of a figure?	2. Which transformation of a figure will create an image that is no congruent to the original figure?		
A. Dilation	A. Dilation by a factor of 7		
B. Reflection	B. Reflection about the line $y = x$		
C. Rotation	C. Translation by 5 units to the left on the <i>x</i> -axis		
D. Translation	D. Rotation by 180°		
3. Which of the following represents the translation of Point $B(2, 4)$ to Point $B'(6, 1)$?	4. Which transformation does not preserve distance?		
A. $(x, y) \to (x - 4, y + 3)$	A. Reflection across the x-axis		
B. $(x, y) \to (x - 3, y + 4)$	B. Rotation of 90° clockwise		
C. $(x, y) \to (x + 2, y - 5)$	C. Translation down 3 units		
D. $(x, y) \to (x + 4, y - 3)$	D. Dilation by a factor of $\frac{3}{4}$		

7. Which transformations describes how $\triangle ABC$ was moved	8. The translation $(x, y) \rightarrow (x - 2, y + 4)$ maps $\triangle ABC$ onto
to create $\Delta A'B'C'$ in the picture below?	$\Delta A'B'C'$. What translation maps $\Delta A'B'C'$ onto ΔABC ?
	$\Delta H D C$. What translation maps $\Delta H D C$ onto $\Delta H D C$:
B C C C C C C C C	
A. Translation 5 units down and 1 unit to the right.	
B. Translation 5 units down and 4 units to the left.	
C. Reflection across the y-axis and translation 5 units	
down.	A. $(x, y) \to (x + 2, y + 4)$ C. $(x, y) \to (x - 2, y + 4)$
D. Reflection across the x-axis and clockwise rotation of	B. $(x, y) \to (x + 2, y - 4)$ D. $(x, y) \to (x - 2, y - 4)$
90°	

G-SRT.7 (one question on the exam)		
1. Which equation shows a correct relation for triangle	2. For which va	alue of θ is the statement $\sin 40^{\circ} = \cos \theta$ true?
RSQ? A. $\sin(Q) = \sin(R)$ B. $\sin(Q) = \cos(R)$ C. $\tan(Q) = \cos(R)$ D. $\tan(Q) = \sin(R)$ Q S	A. 40° C. 60°	B. 50° D. 140°
3. Triangle <i>LMN</i> , shown below, is a right triangle.	4 If $\cos(a) = \frac{1}{2}$	$sin(32^{\circ})$, what is the value of a?
5 M 12 N		
	A. 32°	B. 58°
Which of the following is equivalent to $sin L$? $A. cos L$ $B. tan L$ $C. sin N$ $D. cos N$	C. 148°	D. 328°
5. If $sin(x) = cos(y)$, which of these are possible value of x	6. If $sin(2x) =$	$\cos(x+30^{\circ})$, what is the value of x?
and y? A. $x = 0$ and $y = 0$ B. $x = 15$ and $y = 30$		
C. $x = 30$ and $y = 60$	A. 20°	B. 30°
D. $x = 120$ and $y = 60$	C. 50°	D. 110°
7. In ΔWXY , < Y measures 90 degrees. Which statement mu A. $\cos(W) = \tan(X)$ B. $\cos(W) = \tan(W)$ C. $\sin(Y) = \cos(Y)$	ist be true?	
C. $sin(X) = cos(X)$ D. $sin(X) = cos(W)$		
$\mathbf{D}_{\mathbf{r}} = \mathbf{D}_{\mathbf{r}} $		

G-GPE.1 (one question on the exam)	
1. Given a circle with the equation $(x - 2)^2 + (y + 6)^2 =$	2. What is the equation of the circle with a radius 9 and center (-5,
36, which of the following represents the center and radius	3)?
of the circle?	
 A. Center (-2, 6); radius = 6 B. Center (2, -6); radius = 6 C. Center (-2, 6); radius = 36 	A. $(x-5)^2 + (y+3)^2 = 9$ B. $(x+5)^2 + (y-3)^2 = 9$ C. $(x-5)^2 + (y+3)^2 = 81$
D. Center (2, -6); radius = 36	D. $(x+5)^2 + (y-3)^2 = 81$
3. Which equation is represented by the figure on this graph?	4. What is the equation of a circle with radius $\sqrt{5}$ and center
A. $(x-1)^2 + (y-4)^2 = 6$ B. $(x+1)^2 + (y+4)^2 = 6$ C. $(x+4)^2 + (y+1)^2 = 36$ D. $(x-1)^2 + (y-4)^2 = 36$	(5,0)? A. $(x-5)^2 + y^2 = \sqrt{5}$ B. $(x+5)^2 + y^2 = \sqrt{5}$ C. $(x-5)^2 + y^2 = 5$ D. $(x+5)^2 + y^2 = 5$

G-GMD.4 (one question on the exam)	
1. A regular hexagonal pyramid is cut horizontally by a plane.	2. A cylinder is cut into two equal sections by making a vertical cut
	as shown below.
Which is the best description of the smaller pyramid on the top of the surface of the plane?	
	What is the shape of the cross section formed by the
	vertical cut?
A. A similar triangular pyramid.	A. Circle
B. A smaller triangular pyramid.	B. Ellipse
C. A similar hexagonal pyramid.	C. Square
D. A congruent hexagonal pyramid.	D. Rectangle, but not a square
3. What is the shape of the cross section when a sphere is	4. What shape is formed if $\triangle ABC$ shown below is rotated in a
divided into two equal parts?	three-dimensional plane around the x-axis?
	 A. A cone with vertex A B. A cone with vertex B C. A triangular pyramid with vertex A D. A triangular pyramid with vertex B
A. Circle	r r
B. Semicircle	θ
C. Ellipse	В ССА
D. Sphere	

G-MG.1 (one question on the exam)		
1. Which geometric shape would be the best mathematical 2. A model of an object is made of two geometric figures. When		
model for the truck of a tree?	object can be best modeled by a cylinder and a cone?	
A. A cone	A. A human torso	
B. A cylinder	B. An ice cream cone	
C. A triangular prism	C. A camera with lens	
D. A rectangular prism	D. A sharpened pencil	
3. The figure below shows a compost bin.		
Which process is most likely to be used to estimate the total surface area of the compost bin?		

- A. Computing the area of 6 rectangles
- B. Computing the area of 4 trapezoids and 2 rectangles
- C. Finding the perimeter of the base and multiplying by the height
- D. Finding the mean of the perimeters of the base and the top and multiplying by the height

S-IC.2 (one question on the exam)

1. A spinner is divided into 4 equal sectors that are colored green, red, yellow, and blue. The number of times the spinner lands on each color is listed below.

Color	Number of Times
Green	5
Red	8
Yellow	6
Blue	6

Which statement best explains whether the results listed in the table should cause the probability model for the given situation be questioned?

- A. The probability model should not be questioned because the results in the table match the theoretical probability of the events occurring.
- B. The probability model should not be questioned because the results in the table are close enough to the theoretical probability given the number of trails.
- C. The probability model should be questioned because the results in the table match the theoretical probability of the events occurring.
- D. The probability model should be questioned because the results in the table do not match the theoretical probability of the events occurring.

2. Lincoln performed an experiment with a fair spinner where he compared the theoretical probability with the experimental probability. The spinner was divided into eight congruent sections, as shown below.

After 100 spins, Lincoln calculated the probability that he would spin a prime number to be 0.35. Using the spinner, what is the theoretical probability of spinning a prime number?

A. 0.15 B. 0.35 C. 0.50 D. 0.65	A. 0.15	B. 0.35	C. 0.50	D. 0.65
---------------------------------	---------	---------	---------	---------

3. Rachel flips a coin 150 times and finds that the probability	4. Kim tosses a coin multiple times and records the outcomes.	
of the coin landing heads up is $\frac{1}{2}$. Rachel wants to flip the	Which statement is always true?	
 A. The probability of the coin landing heads up is ¹/₂. B. The probability of the coin landing heads up is ¹/₁₅. D. The probability of the coin landing heads up is ¹/₁₅. 	 A. For the first two tosses, the experimental probability of the coin landing heads up will be different from the theoretical probability. B. For the first 10 tosses, the experimental probability of the coin landing heads up will be less than the theoretical probability. C. As the number of tosses increases, the difference between the experimental and theoretical probabilities increases. D. As the number of tosses increases, the difference between the experimental and theoretical probabilities increases. 	
	h equal probability of being landed on. After being spun 50 times, 5 times. What is the experimental probability of landing on red? 0. $\frac{17}{72}$	

S-CP.1 (one question on the exam)		
1. Suppose $S = \{-2, -1, 0, 1, 2\}$ and $T = \{0, 1, 2, 3, 4\}$.	2. Using the Venn diagram below, what is the complement of set A	
Which set represents $S \cap T$?		
	A B	
A. {3,4}		
B. {0,1,2}	$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	
C. {-2, -1}	B. $\{3, 4, 9\}$ 7 4 0	
D. $\{-2, -1, 0, 1, 2, 3, 4\}$	C. {1, 2, 5, 7}	
	D. {3, 4, 6, 8, 9}	
3. If a spinner has eight sections numbered 1 to 8, which of	4. A survey was conducted to find what percentage of high school	
the following events are mutually exclusive?	students prefer watching baseball or football or both. Students	
	had to select one of those three options. Let A represent the set	
	of students who prefer watching baseball and B represent the set	
Event A: Spin a 3	of students who prefer watching football.	
Event B: Spin an even number		
Event C: Spin a multiple of 3		
Event D: Spin a number greater than 2		
	Which statement correctly describes the complement of set A?	
A. Events A and B	A. The students who prefer only baseball.	
B. Events B and C	B. The students who prefer football but not baseball.	
C. Events C and D	C. The students who prefer baseball or football or both.	
D. Events B and D	D. The students who prefer only baseball or football.	

5. Which shaded part *best* represents $A \cap B$?

S-CP.9 (one question on the exam)		
1. In gym class, 14 students are going to play basketball.	2. A bag contains 6 different colored chips. If 2 chips are selected	
Charles is selected as team captain and will choose 6 more students for his team before the other team or team captain	at random, how many different combinations of colors are possible?	
is chosen. In how many ways can a team of 7 be chosen	possible :	
given that Charles must be one of them?		
A. 720	A. 8	
B. 1716	B. 15	
C. 3432	C. 30	
D. 5040	D. 720	
3. Ms. Landrum's homeroom class needs to select a	4. How many different ways can the letters M, T, V, and W be	
president, secretary, and treasurer. If there are 21 students	arranged?	
in the class, how many different choices of the three officers can be made?		
A. 63	A. 4	
B. 441	B. 8	
C. 7980	C. 16	
D. 9261	D. 24	